Все для радиолюбителя

Заполнял таблицу истинности для выражения. Порядок выполнения логических операций

Алгебра логики

Алгебра логики

Алгебра логики (англ. algebra of logic ) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Основоположником алгебры логики является английский математик и логик Дж. Буль (1815-1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

Кроме двузначной алгебры высказываний , в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

В алгебре логики различаются простые (элементарные) высказывания , обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то» . Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В ; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В .

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE) . Это соответствует цифровому представлению — 1 и 0 . Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А ), которое называется отрицанием исходного высказывания , обозначается символически чертой сверху ($A↖{-}$) или такими условными обозначениями, как ¬, "not" , и читается: «не А», «А ложно», «неверно, что А», «отрицание А» . Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖{-}$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B) истинно.

Операция, используемая относительно одной величины, называется унарной . Таблица значений данной операции имеет вид

Высказывание $A↖{-}$ ложно, когда А истинно, и истинно, когда А ложно.

Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖{-}$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.

2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В» ), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В , а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

A B A ∧ B
1 0 0
0 1 0
0 0 0
1 1 1

Высказывание А В истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В А В есть пересечение множеств А и В .

3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В» ), которая символически обозначается с помощью знака ∨ В) и читается: «А или В» . Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B . Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

Таблица истинности операции имеет вид

A B A B
1 0 1
0 1 1
0 0 0
1 1 1

Высказывание А В ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А В — это объединение множеств А и В , т. е. фигура, объединяющая и квадрат, и круг.

4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или» , употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А В ) и читается: «либо А, либо В» . Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

Таблица истинности операции имеет вид

А В А B
1 0 1
0 1 1
0 0 0
1 1 0

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если..., то» в сложное высказывание, которое символически обозначается с помощью знака → (А В ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В» . Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

Таблица истинности операции имеет вид

А В А В
1 0 0
0 1 1
0 0 1
1 1 1

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В , которое читается: «А эквивалентно B» . Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно» . Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

Таблица истинности операции эквивалентности имеет вид

А В А В
1 0 0
0 1 0
0 0 1
1 1 1

Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Приоритет выполнения логических операций следующий: отрицание («не» ) имеет самый высокий приоритет, затем выполняется конъюнкция («и» ), после конъюнкции — дизъюнкция («или» ).

С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А ), то вторник всегда наступает после понедельника (В )» — импликация А В , и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

Рассмотрим, например, построение составного высказывания из высказываний А и В , которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

Примеры решения задач

Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :

1) X = 1; 2) X = 12; 3) X = 3.

Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид

A B A → B
1 0 0
0 1 1
0 0 1
1 1 1

Отсюда получаем:

1) для X = 1:

((1 > 3) ∨ (1 < 3)) → (1 < 4) = ложь ∨ истина → истина = истина → истина = истина;

2) для X = 12:

((12 > 3) ∨ (12 < 3) → (12 < 4) = истина ∨ ложь → ложь = истина → ложь = ложь;

3) для X = 3:

((3 > 3) ∨ (3 < 3)) → (3<4) = ложь ∨ ложь → истина = ложь → истина = истина.

Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .

Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

  • выражения, которые используют операции сравнения («больше», «меньше», «равно», «не равно» и т. п.) и принимают логические значения (например, выражение а > b , где а = 5 и b = 7, равно значению «ложь»);
  • непосредственные логические выражения, связанные с логическими величинами и логическими операциями (например, A ∨ В ∧ С, где А = истина, B = ложь и C = истина).

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

  1. вычисление существующих функциональных зависимостей;
  2. выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
  3. выполнение операций сравнения (в произвольном порядке);
  4. выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

$1 ≤ a ∨ A ∨ sin(π/a - π/b) < 1 ∧ ¬B ∧ ¬(b^a + a^b > a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

4) sin(π/a - π/b) < 1 = sin(π/2 - π/3) < 1 = истина.

После этих вычислений окончательно получим: истина ∨ А ∧ истина ∧ ¬В ∧ ¬истина.

Теперь должны быть выполнены операции отрицания, затем логического умножения и сложения:

5) ¬В = ¬ложь = истина; ¬истина = ложь;

6) A ∧ истина ∧ истина ∧ ложь = истина ∧ истина ∧ истина ∧ ложь = ложь;

7) истина ∨ ложь = истина.

Таким образом, результат логического выражения при заданных значениях— «истина».

Примечание. Учитывая, что исходное выражение есть, в конечном итоге, сумма двух слагаемых, и значение одного из них 1 ≤ a = 1 ≤ 2 = истина, без дальнейших вычислений можно сказать, что результат для всего выражения тоже «истина».

Тождественные преобразования логических выражений

В алгебре логики выполняются основные законы, позволяющие производить тождественные преобразования логических выражений.

Закон Для ∨ Для ∧
Переместительный A ∨ B = B ∨ A A ∧ B = B ∧ A
Сочетательный A ∨ (B ∨ C) = (B ∨ A) ∨ C A ∧ (B ∧ C) = (A ∧ B) ∧ C
Распределительный A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C)
Правила де Моргана ${A ∨ B}↖{-}$ = $A↖{-} ∧ B↖{-}$ ${A ∧ B}↖{-}$ = $A↖{-} ∨ B↖{-}$
Идемпотенции A ∨ A = A A ∧ A = A
Поглощения A ∨ A ∧ B = A A ∧ (A ∨ B) = A
Склеивания (A ∧ B) ∨ (A↖{-} ∧ B) = B (A ∨ B) ∧ (A↖{-} ∨ B) = B
Операция переменной с ее инверсией $A ∨ A↖{-}$ = 1 $A ∧ A↖{-}$ = 0
Операция с константами A ∨ 0 = A
A ∨ 1 = 1
A ∧ 1 = A
A ∧ 0 = 0
Двойного отрицания $A↖{=}$ = A

Доказательства этих утверждений производят на основании построения таблиц истинности для соответствующих записей.

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определенному виду путем использования основных законов алгебры логики. Под упрощением формулы , не содержащей операций импликации и эквивалентности, понимают равносильное преобразование, приводящее к формуле, которая содержит либо меньшее по сравнению с исходной число операций, либо меньшее число переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т. п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Рассмотрим на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

1) X1 ∧ X2 ∨ X1 ∧ X2 ∪ ¬X1 ∧ X2 = X1 ∧ X2 ∨ ¬X1 ∧ X2 = (X1 ∨ ¬X1) ∧ X2 = 1 ∧ X2 = X2 .

Для преобразования здесь можно применить закон идемпотенции, распределительный закон; операцию переменной с инверсией и операцию с константой.

2) X1 ∨ X1 ∧ X2 = X1 ∨ (1 ∨ 1 ∧ X2) = X1 ∨ (1 ∨ X2) = X1 .

Здесь для упрощения применяется закон поглощения.

3) ¬(X1 ∧ X2) ∨ X2 = (¬X1 ∨ ¬X2) ∨ X2 = ¬X1 ∨ ¬X2 ∨ X2 = ¬X1 ∨ 1 = 1 .

При преобразовании применяются правило де Моргана, операция переменной с ее инверсией, операция с константой

Примеры решения задач

Пример 1. Найти логическое выражение, равносильное выражению A ∧ ¬(¬B ∨ C) .

Решение. Применяем правило де Моргана для В и С: ¬(¬B ∨ C) = B ∧ ¬C .

Получаем выражение, равносильное исходному: A ∧ ¬(¬B ∨ C) = A ∧ B ∧ ¬C .

Ответ: A ∧ B ∧ ¬C.

Пример 2. Указать значение логических переменных А, В, С, для которых значение логического выражения (A ∨ B) → (B ∨ ¬C ∨ B) ложно.

Решение. Операция импликации ложна только в случае, когд а из истинной посылки следует ложь. Следовательно, для заданного выражения посылка A ∨ B должна принимать значение «истина», а следствие, т. е. выражение B ∨ ¬C ∨ B , — «ложь».

1) A ∨ B — результат дизъюнкции — «истина», если хотя бы один из операндов — «истина»;

2) B ∨ ¬C ∨ B — выражение ложно, если все слагаемые имеют значение «ложь», т. е. В — «ложь»; ¬C — «ложь», а следовательно, переменная С имеет значение «истина»;

3) если рассмотреть посылку и учесть, что В — «ложь», то получим, что значение А — «истина».

Ответ: А — истина, В — ложь, С — истина.

Пример 3. Каково наибольшее целое число X, при котором истинно высказывание (35

Решение. Запишем таблицу истинности для операции импликации:

A B A → B
1 0 0
0 1 1
0 0 1
1 1 1

Выражение X < (X - 3) ложно при любых положительных значениях X. Следовательно, для того чтобы результатом импликации была «истина», необходимо и достаточно, чтобы выражение 35 < X · X также было ложно. Максимальное целое значение X, для которого 35 < X · X ложно, равно 5.

Ответ: X = 5.

Использование логических выражений для описания геометрических областей

Логические выражения могут быть использованы для описания геометрических областей. В этом случае задача формулируется так: записать для заданной геометрической области такое логическое выражение, которое принимает значение «истина» для значений x, y тогда и только тогда, когда любая точка с координатами (x; y) принадлежит геометрической области.

Рассмотрим описание геометрической области с помощью логического выражения на примерах.

Пример 1. Задано изображение геометрической области. Записать логическое выражение, описывающее множество точек, принадлежащих ей.

1) .

Решение. Заданную геометрическую область можно представить в виде набора следующих областей: первая область — D1 — полуплоскость ${x}/{-1} +{y}/{1} ≤ 1$, вторая — D2 — круг с центром в начале координат $x^2 + y^2 ≤ 1$. Их пересечение D1 $∩$ D2 представляет собой искомую область.

Результат: логическое выражение ${x}/{-1}+{y}/{1} ≤ 1 ∧ x^2 + y^2 ≤ 1$.

2)

Эту область можно записать так: |x| ≤ 1 ∧ y ≤ 0 ∧ y ≥ -1 .

Примечание. При построении логического выражения используются нестрогие неравенства, а это значит, что границы фигур также принадлежат заштрихованной области. Если использовать строгие неравенства, то границы учитываться не будут. Границы, не принадлежащие области, обычно изображаются пунктиром.

Можно решить обратную задачу, а именно: нарисовать область для заданного логического выражнения.

Пример 2. Нарисовать и заштриховать область, для точек которой выполняется логическое условие y ≥ x ∧ y + x ≥ 0 ∧ y < 2 .

Решение. Искомая область представляет собой пересечение трех полуплоскостей. Строим на плоскости (x, y) прямые y = x; y = -x; y = 2. Это границы области, причем последняя граница y = 2 не принадлежит области, поэтому ее наносим пунктирной линией. Для выполнения неравенства y ≥ x нужно, чтобы точки находились слева от прямой y = x, а неравенство y = -x выполняется для точек, которые находятся справа от прямой y = -x. Условие y < 2 выполняется для точек, лежащих ниже прямой y = 2. В результате получим область, которая изображена на рис.:

Использование логических функций для описания электрических схем

Логические функции очень удобны для описания работы электрических схем. Так, для схемы, представленной на рис., где значение переменной X — это состояние выключателя (если он включен, значение X — «истина», а если выключен — «ложь»), это значение Y — это состояние лампочки (если она горит — значение «истина», а если нет — «ложь»), логическая функция запишется так: Y = X . Функцию Y называют функцией проводимости.

Для схемы, представленной на рис., логическая функция Y имеет вид: Y = X1 ∪ X2, т. к. достаточно одного включенного выключателя, чтобы горела лампочка. В схеме на рис., для того чтобы горела лампочка, должны быть включены оба выключателя, следовательно, функция проводимости имеет вид: Y = X1 ∧ X2 .

Для более сложной схемы функция проводимости будет иметь вид: Y = (X11 ∨ (X12 ∧ X13)) ∧ X2 ∧ (X31 ∨ X32).

Схема также может содержать контакты на замыкание. В этом случае размыкаемый контакт как выключатель обеспечивает загорание лампочки, когда кнопка отпущена, а не нажата. Для таких схем размыкающий выключатель описывается отрицанием.

Две схемы называются равносильными , если через одну из них ток проходит тогда, когда он проходит и через другую. Из двух равносильных схем более простой считается схема, функция проводимости которой содержит меньшее число элементов. Задача нахождения наиболее простых схем среди равносильных очень важна.

Использование аппарата алгебры логики при проектировании логических схем

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера. Любая информация при обработке на компьютере представляется в двоичной форме, т. е. кодируется некоторой последовательностью 0 и 1. Обработку двоичных сигналов, соответствующих 0 и 1, выполняют в компьютере логические элементы. Логические элементы, которые выполняют основные логические операции И, ИЛИ, НЕ, представлены на рис.

Условные обозначения логических элементов являются стандартными и используются при составлении логических схем компьютера. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу компьютера.

Технически компьютерный логический элемент реализуется в виде электрической схемы, которая представляет собой соединение различных деталей: диодов, транзисторов, резисторов, конденсаторов. На вход логического элемента, который называют также вентилем, поступают электрические сигналы высокого и низкого уровней напряжения, на выход выдается один выходной сигнал также либо высокого, либо низкого уровня. Эти уровни соответствуют одному из состояний двоичной системы: 1 — 0; ИСТИНА — ЛОЖЬ. Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем. Работу логических схем описывают с помощью таблиц истинности. Условное обозначение на схеме ИЛИ знак «1» — от устаревшего обозначения дизъюнкции как «>=1» (значение дизъюнкции равно 1, если сумма двух операндов больше или равна 1). Знак «&» на схеме И является сокращенной записью английского слова and.

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным .

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности , т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы ${X1}↖{-} ∧ X2 ∨ {X1 ∨ X2}↖{-} ∨ X1$.

X1 X2 ${X1}↖{-}$ ${X1}↖{-}$ \ X2 X1 ∧ X2 ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ∨ X1
1 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 1 1 0 1 1
0 0 1 0 0 1 1 1

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной ; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной ; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой . Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

  1. в таблице истинности функции выбирают наборы аргументов, для которых логические формы равны 1 («истина»);
  2. все выбранные логические наборы как логические произведения аргументов записывают, последовательно соединив их между собой операцией логической суммы (дизъюнкции);
  3. для аргументов, которые являются ложными, в построенной записи проставляют операцию отрицания.

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

Ответ: F(X1, X2) = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

  1. в таблице истинности выбирают наборы аргументов, для которых логические формы равны 0 («ложь»);
  2. все выбранные логические наборы как логические суммы аргументов записывают последовательно, соединив их между собой операцией логического произведения (конъюнкции);
  3. для аргументов, которые являются истинными, в построенной записи проставляют операцию отрицания.

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1 X2 F(X1, X2)
1 1 1
0 1 0
1 0 0
0 0 1

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .

Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

Таким образом, получена запись логической функции в КНФ.

Ответ: X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2 = X1 ∧ ${X1}↖{-}$ ∨ X1 ∧ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ ${X2}↖{-}$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ 0 = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

Пример 2 . Построить логическую функцию для заданной таблицы истинности:

Искомая формула: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 .

Ее можно упростить: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 = X2 ∧ (X1 ∨ ${X1}↖{-}$) = X2 ∧ 1 = X2.

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

X1 X2 X3 F(X1, X2, X3)
1 1 1 1 X1 ∧ X2 ∧ X3
1 0 1 0
0 1 1 1 ${X1}↖{-}$ ∧ X2 ∧ X3
0 0 1 0
1 1 0 1 X1 ∧ X2 ∧ ${X3}↖{-}$
1 0 0 1 X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$
0 1 0 0
0 0 0 0

Искомая формула: X1 ∧ X2 ∧ X ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∪ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$.

Формула достаточно громоздка, и ее следует упростить:

X1 ∧ X2 ∧ X3 ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∨ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ = X2 ∧ X3 ∧ (X1 ∨ ${X1}↖{-}$) ∨ X1 ∧ ${X3}↖{-}$ ∧ (X2 ∨ ${X2}↖{-}$) = X2 ∧ X3 ∨ X1 ∧ ${X3}↖{-}$.

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

X1 X2 X3 Y(X1, X2, X3)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок 2-й урок 3-й урок
Информатика 1 1 0
Математика 1 0 1
Физика 0 1 1

Из таблицы видно, что существуют два варианта искомого расписания:

  1. математика, информатика, физика;
  2. информатика, физика, математика.

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

  1. Борис — самый старший;
  2. играющий в футбол младше играющего в хоккей;
  3. играющие в футбол и хоккей и Петр живут в одном доме;
  4. когда между лыжником и теннисистом возникает ссора, Борис мирит их;
  5. Петр не умеет играть ни в теннис, ни в бадминтон.

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

Из таблицы видно, что в теннис может играть только Алексей.

Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

4.3. Логические функции и таблицы истинности

Соотношения между логическими переменными и логическими функциями в алгебре логики можно отобразить также с помощью соответствующих таблиц, которые носят название таблиц истинности. Таблицы истинности находят широкое применение, поскольку наглядно показывают, какие значения принимает логическая функция при всех сочетаниях значений ее логических переменных. Таблица истинности состоит из двух частей. Первая (левая) часть относится к логическим переменным и содержит полный перечень возможных комбинаций логических переменных А, В, С… и т. д. Вторая (правая) часть этой таблицы определяет выходные состояния как логическую функцию от комбинаций входных величин.

Например, для логической функции F = A v B v C (дизъюнкции) трех логических переменных А, В, и С таблица истинности будет иметь вид, показанный на рис. 4.1. Для записи значений логических переменных и логической функции данная таблица истинности содержит 8 строк и 4 столбца, т. е. число строк для записи значений аргументов и функции любой таблицы истинности будет равно 2 n , где п – число аргументов логической функции, а число столбцов равно п + 1.

Рис. 4.1. Таблица истинности для логической функции F = A v В v С

Таблицу истинности можно составить для любой логической функции, например, на рис. 4.2 приведена таблица истинности логической функции F = A ? B ? C (эквиваленции).

Логические функции имеют соответствующие названия. Для двух двоичных переменных существует шестнадцать логических функций, названия которых приведены ниже. На рис. 4.3 представлена таблица, в которой приведены логические функции F 1 , F 2 , F 3 , … , F 16 двух логических переменных A и В.

Функция F 1 = 0 и называется функцией константы нуля, или генератора нуля.

Рис. 4.2. Таблица истинности для логической функции F = A ? B ? C

Рис. 4.3. Логические функции F 1 , F 2 , F 3 ,… F 16 двух аргументов А и В

Функция F 2 = A & B называется функцией конъюнкции.

А.

Функция F 4 = А А.

называется функцией запрета по логической переменной В.

Функция F 6 = В называется функцией повторения по логической переменной В.

называется функцией исключающее «ИЛИ».

Функция F 8 = A v В называется функцией дизъюнкции.

называется функцией Пирса.

называется функцией эквиваленции.

В.

Функция F 12 = B ? A B ? A.

называется функцией отрицания (инверсии) по логической переменной А.

Функция F 14 = A ? B называется функцией импликации A ? B .

называется функцией Шеффера.

Функция F 16 = 1 называется функцией генератора 1.

Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:

Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.

При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.

Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»

Как видно из рис. 4.4, в состав логических функций программы MS Excel входит функционально полный набор логических функций, состоящий из следующих логических функций: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание). Таким образом, с помощью функционально полного набора логических функций программы MS Excel можно реализовать другие функции. Логическая функция ЕСЛИ (импликация), также входящая в логические функции MS Excel, выполняет логическую проверку и в зависимости от результата проверки выполняет одно из двух возможных действий. В данной программе она имеет следующий формат: = ЕСЛИ (арг1;арг2;арг3), где арг1 – логическое условие; арг2 – возвращаемое значение при условии, что значение аргумента арг1 выполняется (ИСТИНА); арг3 – возвращаемое значение при условии, что значение аргумента арг1 не выполняется (ЛОЖЬ). Например, если в произвольную ячейку листа программы MS Excel ввести выражение « = ЕСЛИ (А1 = 5; „пять“; „не пять“)», то при вводе числа 5 в ячейку А1 и нажатии клавиши «Enter» в ячейке А1 автоматически будет записано слово «пять», при вводе любого другого числа в ячейку А1 в ней запишется слово «не пять». Как уже отмечалось, с помощью логических функций программы MS Excel можно представить другие логические функции и соответствующие им таблицы истинности.

Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции F = А & В (конъюнкции), состоящую из двух строк и трех столбцов, которая позволяет при изменении значений (0 или 1) логических переменных А и В автоматически устанавливать, например, в ячейке Е6 значение функции F = А & В, соответствующее значениям этих логических переменных. Для этого в ячейку Е6 введем следующее выражение: «=ЕСЛИ(И(С6;D6);1;0)», тогда при вводе в ячейки С6 и D6 значений 0 или 1 в ячейке Е6 будет выполняться логическая функция F = А & В. Результат этих действий представлен на рис. 4.5.

Рис. 4.5. Реализация модифицированной таблицы истинности логической функции F = A & В

Данный текст является ознакомительным фрагментом. Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Логические команды Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Логические функции в Excel При расчетах часто приходится выбирать формулу в зависимости от конкретных условий. Например, при расчете заработной платы могут применяться разные надбавки в зависимости от стажа, квалификации или конкретных условий труда, которые вычисляются

Из книги Excel. Мультимедийный курс автора Мединов Олег

Логические функции Логические функции могут найти применение при математических, инженерных вычислениях или при сравнительном анализе данных. Мы рассмотрим одну логическую функцию на примере функции ЕСЛИ.С помощью функции ЕСЛИ вы можете создать логическое выражение и

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.1. Логические переменные и логические операции Информация (данные, машинные команды и т. д.) в компьютере представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Электрический сигнал, проходящий по электронным схемам и соединительным

Из книги Справочник по PHP автора

Логические функции определения типа переменной is_scalarПроверяет, является ли переменная простой.Синтаксис:bool is_scalar(mixed var)Возвращает true, если var имеет скалярный тип (чила, строки, логические значения), но не комплексный (массивы или объекты).is_nullПроверяет, является ли

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Логические операторы Логические операторы выполняют действия над логическими значениями. Все они приведены в табл. 14.5. А в табл. 14.6 и 14.7 показаны результаты выполнения этих операторов.Основная область применения логических операторов - выражения сравнения (о них см.

Из книги XSLT автора Хольцнер Стивен

Логические функции XPath XPath также поддерживает следующий набор логических функций: boolean(). Приводит аргумент к логическому значению; false(). Возвращает false (ложь); lang(). Проверяет, совпадает ли язык, установленный в атрибуте xml:lang, с языком, переданным в функцию; not().

Из книги Технология XSLT автора Валиков Алексей Николаевич

Логические операции В XSLT имеются две логические операции - or и and. Эти операции бинарны, то есть каждая из них определена для двух операндов. Если операнды не являются булевыми значениями, они неявным образом приводятся к булевому типу.Семантика or и and очевидна - они

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Логические операции Логические операции выполняют над своими операндами логические функции И (&&) и ИЛИ (||). Операнды логических операций могут иметь целый, плавающий тип, либо быть указателями. Типы первого и второго операндов могут различаться. Сначала всегда

Из книги Краткое введение в программирование на Bash автора Родригес Гарольд

Логические И и ИЛИ Вы уже видели, что такое управляющие структуры и как их использовать. Для решения тех же задач есть еще два способа. Это логическое И - "&&" и логическое "ИЛИ" - « || ». Логическое И используется следующим образом:выражение_1&&выражение_2Сначала

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Логические операторы Firebird предоставляет три логических оператора, которые могут работать с другими предикатами разными способами.* NOT задает отрицание условия поиска, к которому он применяется. Он имеет наивысший приоритет.* AND создает сложный предикат, объединяет два

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Понимание истинности и ложности Семантически, если предикат возвращает "неопределенность", это не является ни истиной, ни ложью. В SQL при этом утверждения разрешаются только в виде "истина" или "ложь" - утверждение, которое не вычисляется как "истина", рассматривается как

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

IV. Логические операции Обычно логические операции "считают" условные выражения операндами. Операция! имеет один операнд, расположенный справа. Остальные операции имеют два операнда: один слева и один справа. && Логическое И: результат операции имеет значение "истина",

Из книги C++ для начинающих автора Липпман Стенли

Логические нарушения Если накопитель исправен физически, но представляется как пустой или неформатированный, а находящиеся на нем данные не видны операционной системе, то в данном случае повреждены служебные таблицы файловой системы.Данные почти всегда остаются на

Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

12.3.4. Логические объекты-функции Логические объекты-функции поддерживают операции "логическое И" (возвращает true, если оба операнда равны true, – применяет оператор &&, аcсоциированный с типом Type), "логическое ИЛИ" (возвращает true, если хотя бы один из операндов равен true, –

Из книги автора

Логические операции К логическим относятся бинарные операции and, or и xor, а также унарная операция not, имеющие операнды типа boolean и возвращающие значение типа boolean. Эти операции подчиняются стандартным правилам логики: a and b истинно только тогда, когда истинны a и b, a or b истинно

Задание 1 #10050

\((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x)\)

Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 1.

1. Упростим \((x \wedge y) \vee (x \wedge \overline y).\)

По закону дистрибутивности \((y \wedge x) \vee (x \wedge \overline y)\) = \(x \wedge (y \vee \overline y).\) \(y \vee \overline y = 1\) (если \(y = 0,\) то \(\overline y \vee y = 1 \vee 0 = 1,\) если \(y = 1,\) то \(\overline y \vee y = 0 \vee 1 = 1).\) Тогда \(x \wedge (y \vee \overline y) = x \wedge 1 = x .\)

2. Упростим \((y\wedge z) \vee (z \wedge x).\) По закону дистрибутивности \((y\wedge z) \vee (z \wedge x) = z \wedge (y \vee x).\)

3. Получим: \((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x) = x \vee z \wedge (y \vee x).\)

4. В таблице истинности содержится 8 строчек (строк всегда \(2^n,\) где \(n\) - количество переменных). В нашем случае переменных 3.

5. Заполним таблицу истинности.

\[\begin{array}{|c|c|c|c|c|c|c|} \hline x & y & z & y \vee x & z \wedge (y \vee x) & F = x \vee z \wedge (y \vee x) \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}\]

Так как дизъюнкция \(x \vee z \wedge (y \vee x)\) истинна, если истинно хотя бы одно из входящих в нее высказываний, то для \(x = 1\) \(F = 1\) при любых \(y\) и \(z\) (строки 5-8 в таблице истинности).

Рассмотрим случай, когда \(x = 0.\) Тогда значение функции будет зависить от значения \(z \wedge (y \vee x).\) Если \(z \wedge (y \vee x)\) истинна, то и \(F\) истинна, если ложна, то \(F\) ложна. Рассмотрим случай, когда \(F = 1.\) Конъюнкция \((z \wedge (y \vee x))\) истинна, если все входящие в нее высказывания истинны, то есть \(y \vee x = 1\) и \(z = 1.\) \(x = 0,\) значит, \(y \vee x = 1,\) когда \(y = 1\) (строка 4).

Если же одно из высказываний, входящих в конъюнкцию, ложно, то вся конъюнкция ложна. Если \(x = 0\) и \(y = 0,\) то \(y \vee x = 0.\) Тогда \(z \wedge (x \vee y) = 0\) при любом \(z\) (строки 1-2). Так как \(x = 0,\) а второе высказывание, входящее в дизъюнкцию \((z \wedge (x \vee y)),\) тоже ложно, то и вся функция ложна. Если \(x = 0\) и \(y = 1,\) то \(y \vee x = 1.\) Если \(z = 0,\) \(z \wedge (y \vee x) = 0.\) Тогда \(F = 0\) (строка 3). Случай, когда \(z = 1,\) \(y = 1,\) \(x = 0,\) был рассмотрен в предыдущем абзаце.

Мы построили таблицу истинности. Видим, что в ней есть 5 наборов, при которых \(F = 1.\) Поэтому ответ: 5.

Ответ: 5

Задание 2 #10051

Логическая функция \(F\) задаётся выражением:

\((x \wedge \overline y \wedge z) \vee (x \rightarrow y)\)

Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 0.

\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & y & z & \overline y & x\wedge \overline y & x \wedge \overline y \wedge z & \overline x & \overline x \vee y & x \wedge \overline y \wedge z \vee \overline x \vee y \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline \end{array}\]

1. \(x \rightarrow y\) = \(\overline x \vee y.\)

2. Заметим, что при \(y = 1\) \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно выражение, входящее в нее (строки 3-4, 7-8 в таблице истинности). Аналогично при \(\overline x = 1,\) то есть при \(x = 0,\) \(F = 1\) (строки 1-4).

3. При \(x = 1\) и \(y = 0\) \(\overline x \vee y = 0,\) \(x \wedge \overline y = 1.\) При \(z = 1\) \(x \wedge \overline y \wedge z = 1\) и \(F = 1,\) так как истинно одно из выражений (строка 6), а при \(z = 0\) \(x \wedge \overline y \wedge z = 0\) и \(F = 0,\) так как оба выражения, входящие в дизъюнкцию, ложны (строка 5).

По построенной таблице истинности видим, что для одного набора \((x,\) \(y,\) \(z)\) \(F = 0.\)

Ответ: 1

Задание 3 #10052

Логическая функция \(F\) задаётся выражением:

\((\overline{z \vee \overline y}) \vee (w \wedge (z \equiv y)) \)

Составьте её таблицу истинности. В качестве ответа введите сумму значений \(z,\) \(y\) и \(w,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline w & y & z & \overline y & z \vee \overline y & \overline{z \vee \overline y} & z \equiv y & w \wedge (z \equiv y) & \overline z \vee \overline y \vee w \wedge (z \equiv y) \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ \hline \end{array}\]

1. \((\overline{z \vee \overline y}) = \overline z \wedge y \)

2. В таблице истинности будет \(2^3 = 8\) строк.

3. Если \(z = 1 \) и \(y = 1,\) \(то (z \equiv y) = 1 \) (так как эквивалентность истинна тогда и только тогда, когда оба высказывания одновременно ложны или истинны). \(\overline z \wedge y = 0\) \((0 \wedge 1 = 0).\) Если \(w = 1,\) \(w \wedge (z \equiv y) = 1\) \((1 \wedge 1 = 1)\) и \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно из входящих в нее высказываний (строка 8 в таблице истинности). Если \(w = 0,\) \(w \wedge (z \equiv y) = 0\) \((0 \wedge 1 = 0)\) и \(F = 0,\) так как оба высказывания, входящие в дизъюнкцию, ложны (строка 4).

4. Аналогично для \(z = 0, y = 0.\) \((z \equiv y) = 1,\) \(\overline z \wedge y = 0\) \((1 \wedge 0 = 0).\) Тогда снова значение функции будет зависеть от \(w.\) При \(w = 1\) \(w \wedge (z \equiv y) = 1,\) \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строка 5), а при \(w = 0\) \(w \wedge (z \equiv y) = 0,\) \(F = 0,\) так как все высказывания ложны (строка 1).

5. Если \(z = 0\) и \(y = 1,\) то \(\overline z \wedge y = 1\) \((1 \wedge 1 = 1).\) Так как \((z \equiv y) = 0\) (ведь значения \(z\) и \(y\) различны), будет ложна при любом \(w.\) Тогда, так как значение переменной \(w\) не будет влиять на значение функции, при \(z = 0\) и \(y = 1\) \(w\) может быть как 0, так и 1. \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строки 3, 7).

6. Если \(z = 1\) и \(y = 0,\) то \(\overline z \wedge y = 0 \wedge 0 = 0.\) Так как \((z \equiv y) = 0,\) \(w \wedge (z \equiv y) = w \wedge 0\) будет ложна при любом \(w\) (то есть \(w\) может быть и 0 и 1). Значит, при \(z = 1\) и \(y = 0\) \(F\) всегда будет ложна (так как оба высказывания, входящих в дизъюнкцию, ложны, строки 2, 5).

7. \(F = 1\) при следующих наборах \(z,\) \(y,\) \(w:\) (0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 1, 0). Если просуммировать значения, то получим 7.

Ответ: 7

Задание 4 #10053

Логическая функция \(F\) задаётся выражением:

\(a \wedge ((\overline{b \wedge c}) \vee (a \wedge \overline b) \vee (\overline c \wedge a)) \)

Составьте её таблицу истинности. В качестве ответа введите сумму значений \(a,\) \(b\) и \(c,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline \end{array}\]

1. В таблице истинности \(2^3 = 8\) строк.

2. При \(a = 0\) \(F = 0\) при любых значениях \(b\) и \(c,\) так как конъюнкция истинна тогда и только тогда, когда все высказывания, входящие в нее, истинны (строки 1-4 в таблице истинности).

3. Рассмотрим случаи, когда \(a = 1.\) Если \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = 1,\) то \(F = 1\) (так как оба высказывания будут истинны), иначе \(F = 0\) (так как одно высказывание будет ложно). По закону де Моргана \(\overline{b \wedge c} = \overline b \vee \overline c.\) Тогда, учитывая, что \(a = 1,\) \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = \overline b \vee \overline c \vee \overline b \vee \overline c = \overline b \vee \overline c.\)

4. Если \(\overline b = 0\) и \(\overline c = 0\) (одновременно, то есть при \(b = 1\) и \(c = 1),\) то \(\overline b \vee \overline c = 0\) и \(F = 0\) (строка 8). В остальных случаях \(\overline b \vee \overline c = 1\) и \(F = 1\) (строки 5-7).

5. Наборы \((x,\) \(y,\) \(z),\) при которых \(F = 1:\) (1, 0, 0), (1, 1, 0), (1, 0, 1). Сумма значений равна 5.

Ответ: 5

Задание 5 #10054

Логическая функция \(F\) задаётся выражением:

\(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) \)

Составьте таблицу истинности. В качестве ответа введите сумму значений \(a,\) при которых \(F = 0.\)

\[\begin{array}{|c|c|c|c|c|} \hline a & b & c & d & F\\\hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 \\ \hline \end{array}\]

1. По закону дистрибутивности \((a \wedge b) \vee (b \wedge c) = b \wedge (a \vee c).\)

2. \(d \rightarrow a = \overline d \vee a.\)

3. \(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) = b \wedge (a \vee c) \equiv (\overline d \vee a \vee (b \wedge \overline c)) .\)

4. Если \(b = 0,\) то левая часть функции равна 0 \((0 \wedge (a \vee c) = 0).\) \(b \wedge \overline c = 0 \wedge \overline c = 0.\) Значит, для \(b = 0\) \(c\) может быть любым, так как не влияет на значение функции. \(F = 1,\) если \(\overline d \vee a = 0\) (тогда одно из выражений, входящих в дизъюнкцию, будет истинно). Это выполняется при \(\overline d = 0\) \((d = 1)\) и \(a = 0\) (строки 2, 3). При других \(d\) и \(a\) \(\overline d \vee a = 0,\) значит, \(F = 0,\) так как операция эквивалентности истинна тогда и только тогда, когда оба высказывания одновременно истинны или ложны (строки 1, 10 в таблице истинности).

5. Если \(b = 1,\) то \(b \wedge (a \vee c) = 1 \wedge (a \vee c) = a \vee c.\) \(b \wedge \overline c = 1 \wedge \overline c = \overline c.\) Тогда имеем, что \(a \vee c \equiv \overline d \vee a \vee \overline c.\) Если \(a = 1,\) то \(a \vee c = 1 \) и \(\overline d \vee a \vee \overline c = 1,\) так как дизъюнкция истинна, если хотя бы одно из выражений истинно (а в обеих дизъюнкциях есть \(a = 1).\) Тогда, если \(b = 1\) и \(a = 1,\) \(F = 1\) при любых \(c\) и \(d\) (строки 5, 7, 8, 11).

Если \(a = 0,\) то \(a \vee c = 0 \vee c = c,\) а \(\overline d \vee a \vee \overline c = \overline d \vee \overline c.\) Имеем: \(c \equiv (\overline d \vee \overline c).\) При \(c = 1\) \(1 \equiv \overline d.\) При \(d = 1\) \(F = 0,\) так как высказывания различны (строка 4), при \(d = 0\) \(F = 1,\) так как оба высказывания истинны (строка 14). При \(c = 0\) \(0 \equiv (\overline d \vee 1).\) Так как \(\overline d \vee 1\) - дизъюнкция, в которой одно из высказываний истинно, то и вся дизъюнкция истинна. Тогда \(0 \equiv 1,\) что неверно, значит, \(F = 0\) при любых \(d\) (строка 9, 16).

По построенной таблице видим, что \(F = 0\) при \(a = 0\) (строки 1, 4, 9, 10, 16) и при \(a = 1\) (строки 6, 12, 13, 15). Тогда сумма значений равна 0 * 5 + 1 * 4 = 4.

Ответ: 4

Задание 6 #10055

Логическая функция \(F\) задаётся выражением:

\((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) \)

Составьте таблицу истинности. В качестве ответа введите сумму значений \(c,\) при которых \(F = 1.\)

\[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline \end{array}\]

В таблице \(2^3 = 8\) строк.

1. Импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Значит, \(F = 0,\) если a \(c \wedge (b \vee a) = 0.\) В остальных случаях \(F = 1.\) Рассмотрим, при каких значениях \(a,\) \(b\) и \(c\) \(a \equiv (b \vee \overline c) = 1\) (если \(a \equiv (b \vee \overline c) = 0,\) то \(F = 1\) при любом значении \(c \wedge (b \vee a) = 0).\)

Если \(a = 0,\) то, чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) необходимо \(b \vee \overline c = 0\) (ведь операция эквивалентности истинна тогда и только тогда, когда оба высказывания истинны или оба ложны). Чтобы дизъюнкция \((b \vee \overline c)\) была ложна, оба высказывания, входящие в нее, должны быть ложны, то есть \(b = 0\) и \(\overline c = 0\) \((c = 1).\) При таких значениях \(c \wedge (b \vee a) = 1 \wedge (0 \vee 0) = 0.\) Тогда \((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) = 1 \rightarrow 0 = 0,\) \(F = 0.\) Это соответствует строке 2 из таблицы истинности.

Если \(a = 1,\) то чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) \(b \vee \overline c = 1.\) Это выполняется в нескольких случаях. Если \(b = 1,\) то \(c\) может быть равна и нулю и единице, ведь одно из высказываний, входящих в дизъюнкцию, уже истинно. При \(c = 1\) \(c \wedge (b \vee a) = 1 \wedge 1 = 1,\) тогда \(F = 1\) (так как \(1 \rightarrow 1 = 1,\) строка 7). При \(c = 0\) \(c \wedge (b \vee a) = 0 \wedge 1 = 0,\) значит, \(F = 0\) \((1 \rightarrow 0 = 0,\) строка 6). Если \(b = 0,\) то \(\overline c = 1\) \((c = 0,\) тогда одно из высказываний, входящих в дизъюнкцию, будет истинным). В таком случае \(c \wedge (b \vee a) = 0 \wedge (0 \vee 1) = 0.\) \(F = 0,\) так как \(1 \rightarrow 0 = 0\) (строка 5).

2. При других значениях \(a,\) \(b\) и \(c\) \(F = 1,\) потому что \(a \equiv (b \vee \overline c) = 0\) (строки 1, 3, 7, 8).

3. Из составленной таблицы истинности видим, что \(F = 1\) при \(c = 0\) (строки 1, 4) и при \(c = 1\) (строки 3, 7, 8). Сумма значений равна 0 * 2 + 1 * 3 = 3.\(2^4 = 16\) строк.

1. Так как конъюнкция ложна, если ложно хотя бы одно из высказываний, то при \(d = 0\) \(F = 0\) при любых \(a,\) \(b\) и \(c\) (строки 1, 6-10, 12, 14 в таблице истинности).

2. Рассмотрим случай, когда \(d = 1.\) Тогда \((a \rightarrow b) \wedge (b \equiv c) \wedge d = (a \rightarrow b) \wedge (b \equiv c) \wedge 1 = (a \rightarrow b) \wedge (b \equiv c).\) При \(b = 1\) \(a \rightarrow b = a \rightarrow 1 = 1\) при любом \(a,\) так как импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Если \(c = 1,\) то \(b \equiv c = 1,\) так как операция эквивалентности истинна, когда оба выражения истинны или оба ложны, и \(F = 1\) (так как все выражения, входящие в конъюнкцию, истинны). Это соответствует строкам 4 и 5. Если \(c = 0,\) то \(b \equiv c = 0,\) \(F = 0,\) так как одно из выражений, входящее в конъюнкцию, ложно (строки 11 и 16).

При \(b = 0:\) если \(a = 1,\) то \(a \rightarrow b = 1 \rightarrow 0 = 0,\) тогда одно из выражений, входящих в конъюнкцию, ложно, и \(F = 0\) при любом \(c\) (строки 13 и 15). Если \(a = 0,\) то \(a \rightarrow b = 0 \rightarrow 0 = 1.\) Если \(c = 0,\) то \(b \equiv c = 0 \equiv 0 = 1,\) \(F = 1,\) так как оба выражения, входящих в конъюнкцию, истинны (строка 2). Если \(c = 1,\) то \(b \equiv c = 0 \equiv 1 = 0,\) \(F = 0,\) так как одно из выражений, входящих в конъюнкцию, ложно (строка 3).

Таким образом, \(F = 1\) при \(d = 1\) (строки 2, 4, 5). Сумма значений \(d\) равна 1 * 3 = 3.

И , которых Вам будет достаточно для решения сложных логических выражений. Также мы рассмотрим порядок выполнения данных логических операций в сложных логических выражениях и представим таблицы истинности для каждой логической операции. Советуем Вам воспользоваться нашими программами для решения задач по математике, и . Помоми большого количества программ для решения задач на сайте работает , на котором Вы всегда можете задать вопрос и на котором Вам всегда помогуть с решением задач. Пользуйтесь нашими сервисами на здоровье!

Глоссарий, определения логики

Высказывание - это повествовательное предложение, про которое можно определенно сказать истинно оно или ложно (истина (логическая 1), ложь (логический 0)).

Логические операции - мыслительные действия, результатом которых является изменение содержания или объема понятий, а также образование новых понятий.

Логическое выражение - устное утверждение или запись, в которое, наряду с постоянными величинами, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных величин (объектов) логическое выражение может принимать одно из двух возможных значений: истина (логическая 1) или ложь (логический 0).

Сложное логическое выражение - логическое выражение, состоящее из одного или нескольких простых логических выражений (или сложных логических выражений), соединенных с помощью логических операций.

Логические операции и таблицы истинности

1) Логическое умножение или конъюнкция:

Конъюнкция - это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно.
Обозначение: F = A & B.

Таблица истинности для конъюнкции

3) Логическое отрицание или инверсия:

Инверсия - это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

Таблица истинности для инверсии


5) Логическая равнозначность или эквивалентность:

Эквивалентность - это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность.

Таблица истинности для эквивалентности

A B F
1 1 1
1 0 0
0 1 0
0 0 1

Порядок выполнения логических операций в сложном логическом выражении

1. Инверсия;
2. Конъюнкция;
3. Дизъюнкция;
4. Импликация;
5. Эквивалентность.

Для изменения указанного порядка выполнения логических операций используются скобки.

В цифровой схемотехнике цифровой сигнал - это сигнал, который может принимать два значения, рассматриваемые как логическая "1" и логический "0".

Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ - разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.

Логические схемы реализуются на логических элементах: "НЕ", "И", "ИЛИ", "И-НЕ", "ИЛИ-НЕ", "Исключающее ИЛИ" и "Эквивалентность". Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе . Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).

На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.

Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.

Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:

  • трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
  • четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).

Рассмотрим построение (синтез) логических схем

  • в булевом базисе "И", "ИЛИ", "НЕ" (в предпоследнем параграфе);
  • в также распространённых базисах "И-НЕ" и "ИЛИ-НЕ" (в последнем параграфе).

Задача анализа логических схем

Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.

  1. Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
  2. Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра - номер яруса, а остальные цифры - порядковый номер элемента в ярусе.
  3. Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
  4. Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.

Пример 1.

Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:

x , y , z :

x y z f
1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0

Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.


Продолжаем искать булеву функцию логической схемы вместе

Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x , y , z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 0 1 1
1 1 0 0 1 1
1 0 1 1 0 1
1 0 0 0 0 0
0 1 1 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 1 1

Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная - самая нижняя - пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x , y , z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1
1 1 0 1 1 1
1 0 1 1 0 1
1 0 0 1 0 1
0 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 0 1
0 0 0 1 0 1

Задача синтеза логических схем в булевом базисе

Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.

Каждой дизъюнкции (логической сумме) соответствует элемент "ИЛИ", число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент "И", число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент "НЕ".

Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.

Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении